generated from the chemical reaction of the cladding with water or steam shall not exceed 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react.

- (4) Coolable geometry. Calculated changes in core geometry shall be such that the core remains amenable to cooling.
- (5) Long-term cooling. After any calculated successful initial operation of the ECCS, the calculated core temperature shall be maintained at an acceptably low value and decay heat shall be removed for the extended period of time required by the long-lived radioactivity remaining in the core.
- (c) As used in this section: (1) Loss-of-coolant accidents (LOCA's) are hypothetical accidents that would result from the loss of reactor coolant, at a rate in excess of the capability of the reactor coolant makeup system, from breaks in pipes in the reactor coolant pressure boundary up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system.
- (2) An evaluation model is the calculational framework for evaluating the behavior of the reactor system during a postulated loss-of-coolant accident (LOCA). It includes one or more computer programs and all other information necessary for application of the calculational framework to a specific LOCA, such as mathematical models used, assumptions included in the programs, procedure for treating the program input and output information, specification of those portions of analysis not included in computer programs, values of parameters, and all other information necessary to specify the calculational procedure.
- (d) The requirements of this section are in addition to any other requirements applicable to ECCS set forth in this part. The criteria set forth in paragraph (b), with cooling performance calculated in accordance with an acceptable evaluation model, are in implementation of the general requirements with respect to ECCS cooling performance design set forth in this

part, including in particular Criterion 35 of appendix A.

[39 FR 1002, Jan. 4, 1974, as amended at 53 FR 36004, Sept. 16, 1988; 57 FR 39358, Aug. 31, 1992; 61 FR 39299, July 29, 1996; 62 FR 59276, Nov. 3, 1997]

§ 50.46a Acceptance criteria for reactor coolant system venting systems.

Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required to maintain adequate core cooling if the accumulation of noncondensible gases would cause the loss of function of these systems. High point vents are not required for the tubes in U-tube steam generators. Acceptable venting systems must meet the following criteria:

- (a) The high point vents must be remotely operated from the control room.
- (b) The design of the vents and associated controls, instruments and power sources must conform to appendix A and appendix B of this part.
- (c) The vent system must be designed to ensure that:
- (1) The vents will perform their safety functions; and
- (2) There would not be inadvertent or irreversible actuation of a vent.

[68 FR 54142, Sept. 16, 2003]

§ 50.47 Emergency plans.

- (a)(1) Except as provided in paragraph (d) of this section, no initial operating license for a nuclear power reactor will be issued unless a finding is made by the NRC that there is reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency. No finding under this section is necessary for issuance of a renewed nuclear power reactor operating license.
- (2) The NRC will base its finding on a review of the Federal Emergency Management Agency (FEMA) findings and determinations as to whether State and local emergency plans are adequate and whether there is reasonable assurance that they can be implemented, and on the NRC assessment as to whether the applicant's onsite emergency plans are adequate and whether there is reasonable assurance that they